Advanced Deep Space System Development Program

FIRST DELIVERY

David Woerner

NASA/Jet Propulsion Laboratory david.f.woerner@jpl.nasa.gov

Advanced Deep Space System Development Program Workshop on Advanced Spacecraft Technologies
Pasadena, CA
June 3, 1997

Flow of Advanced Deep Space System Development Deliveries

Advanced Deep Space System Development 1st Delivery

X2000

AN INTEGRATED and QUALIFIED engineering model FLIGHT and GROUND SYSTEM

- Flight System Micro-electronics
 - Computer and memory
 - Neural Network
 - Digital Signal Processor
 - Power & Pyro Switching
 - Sensor/Instrument I/O
 - Scaleable, modular, long life
 - RAD Hardened Designs and Parts
 - Low Temperature, low power
 - X and Ka Band Comm
 - Optical Comm -- Possible
- F/S and GND S/W with W.S:
 - Operating systems
 - Generic auto NAV, 3-Axis A/C
 - Generic F/S-GND autonomy
 - Generic F/S-GND science data processing
 - Generic GND CMD/TLM processing/display
- ARPS power source
- Other: Micro-electronic components, structure, thermal, propulsion, etc. as budget allows

Flight System Summary

An Example for a Europa Orbiter

- Radar sounder, LIDAR, mult. spec. WAC & MAC

o Telecom

- Redundant Optical Com/NAC/Laser Alt receiver

- Single DSTT with X-band SSPA & MGA

o Data System

- 3D Stack MCM Computers (3)

- Stacked memory Solid State Recorder

- Multiple buses/variable power draw

o Power

- 150 W. ARPS

- Power & pyro switching microelectronics

o Attitude Control

- 3 axis stabilized

- Adv. Stellar Compass w/CPU

- Solid state IMU

- Sun sensors

o Propulsion

- 400 N dual mode w/liquid regulators

- 20 N TVC biprop thrusters

- Monoprop 1 N and 5 mN RCS thrusters

o Temperature Control

- ARPS waste heat

- MLI blankets and louvers

- RHU's

- Electric heaters

Performance

Pointing Control 2 mrad
Pointing Knowledge 1.5 mrad
Rate Control <10 µrad/sec
Processor Speed 4-50 MHz
Data Bus Rate 50 Mb/sec

Data Storage Redundant 16 Gb

Downlink (Optical) ~100 Kb/sec @Europa

Power 150 W @Europa

 ΔV Capability 2.5 km/sec

Legend:

MCM - Multichip Module

MAC/NAC/WAC - Medium/Narrow/Wide Angle Camera

DSTT - Tiny Deep Space Transponder

ARPS - Advanced Radioisotope Power Source MLI - Multi-layer insulation

RCS - Reaction Control System
IMU - Inertial Measurement Unit

RHU - Radioisotope Heater Unit

Europa Orbiter Configuration using an RF telecom system

Advanced Deep Space System Development

X2000

HCD/RSDL = Hardware Command Decoder/Need Solar Downlink **PWR** = Power

MCM = Multi-chip Modes OPT = Optical SSPA = Solid State Power Amplifier

NMP = New Millennium Program DS1= Deep Space 1, 1st NMP Technology Demo Flight

Technology Development and Insertion

X2000

- Microelectronics
 - 3D MCM Stacking
 - Integrates C&DH, Attitude Control, Telecom, and Power & Pyro Switching
 - Multifunctional Structure
 - HDI power electronics
 - Provides a general purpose scaleable processing environment, inc:
 - Digital Signal Processors
 - Multi-processor architecture
 - Neural Nets
- Advanced Radioisotope Power Source
- Software
 - Unified flight and ground system architecture, employing flight and ground autonomy, tasks readily transfered between ground and flight
 - On-board, distributed applications and processing
 - On-board planning of flight system activities and navigation
 - Software Implemented Fault Tolerance
 - Scaleable to mission needs; a general platform for mission to build upon

Technology Development and Insertion

X2000

- RF telecom
 - Transponder integrated with avionics
- Optical Communications
 - Comm Terminal capable of >100 kbps from Europa orbit
 - Also acts as laser altimeter receiver
 - Also acts as extremely high-resolution science imager
- Altitude control
 - Advanced Stellar Compass
- Propulsion
 - Hydrazine µthrusters
 - Variable liquid regulators
- Parts & Materials
 - Low voltage/power, rad hard electronic parts (≤ 3.3 V for digital electronics)
 - Electronics parts list with radiation dose tolerances selectable by missions
 - Unshielded materials capable of withstanding radiation dose >25 Mrad
- Additional options
 - Next generation SEP
 - Optical processing

Power Microelectronics Technologies

X2000

Circuit

1773

Protocol

Chip

DATA

BUS

I/F

Overview

Current Technology: PC Board packaging, discrete component control circuit, relay enable and command switches and SCR fire circuit for pyros

Target Technologies: 1. Mixed signal ASICs, 2. Power High Density Interconnect (PHDI) packaging, 3. modular fault tolerant design

Benefits: 1. Reduce mass and volume, 2. standard command interface, 3. Provides peak power at maximum load, 4. configurable to various power source characteristics

Impact of Fallback: Several kg mass increase, increase in volume

Key Issues: Laser vs. NSI Pyro technology, thermal design, fault tolerant control circuit

Advanced Radioisotope Power Source (ARPS) Technology

Overview

Current Technology: *Galileo/Cassini* heritage RTG with 6-7% efficiency

unicouple conversion

Target Technology: >20% conversion using either AMTEC

Benefits: Mass reduction, smaller quantity of radioisotope

Key Issues: lifetime; efficiency; radiator size; heat rejection temperature

Impact of Fallback: > 12 kg mass increase

3x Efficiency over RTG's 130 watts after 15 yrs Design is scaleable in 50W Units Uses Cassini GPHS

Optical Communications Technology

X2000

Current Technology: X/Ka-band RF telecommunications systems

Target Technology: 30-cm optical comm terminal, uplink & downlink

Benefits: Dramatic increase in telemetry rate at mass and power levels equivalent to RF telecom system; see plot below

Key Issues: lifetime, system-level fault protection

Impact of Fallback: Reduction in science data returned

